PDF: 5.0057100.pdf
5.0057100
ABSTRACT
Mask material | Filtration efficiency (%) | ΔP (Pa) | ΔP/Pdyn | ΔP/Q (Pa s/m3×10−5) |
---|---|---|---|---|
Cloth | 40 | 1196 | 1356 | 19.67 |
Surgical | 47 | 573 | 650 | 9.42 |
KN95 | 95 | 1014 | 1150 | 16.68 |
R95 | 96 | 606 | 687 | 9.97 |
dcdt=∇·(K∇c)+R−λc, | (1) |
where c is the concentration of aerosol particles (particles m−3), t is time, K is the diffusion coefficient (m2 s−1), R is the particle injection rate (particles m−3 s−1), and the sink term containing the decay rate λ (s−1) which takes into account particle decay.35
dcdt=R−λc. | (2) |
The solution to Eq. (2), subject to the initial condition c*(t=0)=0, is given by
c*(t)=R*λ*(1−e−λ*t). | (3) |
For the purposes of practical data assimilation considered in the present study, the underlying simplification absorbs the effect of diffusion into the sink and source terms. This makes the solution dependent on the spatial location, and the relevant parameters are marked with an asterisk (c*, R*, λ*). Equation (3) models the temporal evolution of concentration in a typical first-order fashion with a saturation concentration of c*sat=R*/λ*. Although previous studies have noted significant deviations of diffusion-based computational results from the well-mixed model,72–74 the simplified model will be shown to fit well with the experimental data and thus provides a suitable comparison basis for saturation conditions. The latter allows for relative source strength comparisons between different test cases, which is of particular importance for the evaluation of the apparent mask filtration efficiency.
Material | R* (%h) | λ* (h–1) | c*sat=R*/λ* (%) | ηAFE (%) |
---|---|---|---|---|
No mask | 0.53 ± 0.11 | 0.46 ± 0.11 | 1.13 ± 0.057 | ⋯ |
Cloth | 0.45 ± 0.27 | 0.44 ± 0.31 | 1.02 ± 0.11 | 9.8 ± 9.7 |
Surgical | 0.41 ± 0.36 | 0.41 ± 0.39 | 0.99 ± 0.11 | 12.4 ± 9.7 |
KN95 | 0.27 ± 0.10 | 0.45 ± 0.12 | 0.61 ± 0.095 | 46.3 ± 9.4 |
R95 | 0.19 ± 0.09 | 0.42 ± 0.11 | 0.45 ± 0.09 | 60.2 ± 9.0 |
KN95-gap | 0.46 ± 0.16 | 0.42 ± 0.21 | 1.09 ± 0.09 | 3.4 ± 8.9 |
KN95-valve | 0.37 ± 0.12 | 0.41 ± 0.14 | 0.90 ± 0.09 | 20.3 ± 8.9 |
ηAFE=100×(c*satNoMask−c*satc*satNoMask). | (4) |
The resulting estimates for the apparent filtration efficiency (ηAFE) are reported in Table III, which confirms that ηAFE for all the masks is significantly lower than the filtration efficiencies for their respective materials presented in Table II. The R95 mask has the highest ηAFE of 60.2%, which is attributed to the tighter fit of the mask obtained by the overhead straps, a relatively stiff fabric, and the built-in soft sealing layer at the nose bridge of the mask. For KN95 mask, the gaps along the cheeks and the nose bridge are found to be comparatively larger, which leads to a lower ηAFE despite a similar filtration efficiency of the material. The cloth and surgical masks perform relatively poorly with efficiencies of only 9.8% and 12.4%, respectively, due to both low material filtration efficiency and significantly higher amounts of leakages around the cheeks and bridge of the nose. Further, due to the higher flexibility of the cloth and surgical mask material, they easily deform during exhalation, causing an increase in the size of the preexisting gaps, allowing more aerosols to escape.
ACH | R* (%/h) | λ* (h–1) | c*sat=R*/λ* (%) | ηAFE (%) |
---|---|---|---|---|
0 | 0.53 | 0.46 | 1.13 | ⋯ |
1.7 | 0.48 | 1.36 | 0.35 | 69 |
2.45 | 0.52 | 2.19 | 0.24 | 79 |
3.2 | 0.41 | 2.27 | 0.18 | 84 |
ACKNOWLEDGMENTS
REFERENCES
- 1.L. Bourouiba, “ The fluid dynamics of disease transmission,” Annu. Rev. Fluid Mech. 53, 473–508 (2021). https://doi.org/10.1146/annurev-fluid-060220-113712, Google ScholarCrossref
- 2.R. Mittal, R. Ni, and J.-H. Seo, “ The flow physics of COVID-19,” J. Fluid Mech. 894, F2 (2020). https://doi.org/10.1017/jfm.2020.330, Google ScholarCrossref
- 3.L. Bourouiba, “ Turbulent gas clouds and respiratory pathogen emissions: Potential implications for reducing transmission of COVID-19,” JAMA 323, 1837–1838 (2020). https://doi.org/10.1001/jama.2020.4756, Google ScholarCrossref
- 4.S. Asadi, N. Bouvier, A. S. Wexler, and W. D. Ristenpart, “ The coronavirus pandemic and aerosols: Does COVID-19 transmit via expiratory particles?” Aerosol. Sci. Technol. 54(6), 635–638 (2020). Google ScholarCrossref
- 5.N. van Doremalen, T. Bushmaker, D. H. Morris, M. G. Holbrook, A. Gamble, B. N. Williamson, A. Tamin, J. L. Harcourt, N. J. Thornburg, S. I. Gerber, J. O. Lloyd-Smith, E. de Wit, and V. J. Munster, “ Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1,” N. Engl. J. Med. 382, 1564–1567 (2020). https://doi.org/10.1056/NEJMc2004973, Google ScholarCrossref
- 6.S. W. X. Ong, Y. K. Tan, P. Y. Chia, T. H. Lee, O. T. Ng, M. S. Y. Wong, and K. Marimuthu, “ Air, surface environmental, and personal protective equipment contamination by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) from a symptomatic patient,” JAMA 323, 1610–1612 (2020). https://doi.org/10.1001/jama.2020.3227, Google ScholarCrossref
- 7.S. Asadi, C. D. Cappa, S. Barreda, A. S. Wexler, N. M. Bouvier, and W. D. Ristenpart, “ Efficacy of masks and face coverings in controlling outward aerosol particle emission from expiratory activities,” Sci. Rep. 10, 15665 (2020). https://doi.org/10.1038/s41598-020-72798-7, Google ScholarCrossref
- 8.S. Feng, C. Shen, N. Xia, W. Song, M. Fan, and B. J. Cowling, “ Rational use of face masks in the COVID-19 pandemic,” Lancet Respir. Med. 8, 434–436 (2020). https://doi.org/10.1016/S2213-2600(20)30134-X, Google ScholarCrossref
- 9.Y. Li, H. Qian, J. Hang, X. Chen, L. Hong, P. Liang, J. Li, S. Xiao, J. Wei, L. Liu et al., “ Evidence for probable aerosol transmission of SARS-CoV-2 in a poorly ventilated restaurant,” MedRXiv (2020); accessed 13 July 2021. https://doi.org/10.1101/2020.04.16.20067728, Google ScholarCrossref
- 10.D. Lewis, “ Is the coronavirus airborne? Experts can’t agree,” Nature 580, 175 (2020). https://doi.org/10.1038/d41586-020-00974-w, Google ScholarCrossref
- 11.L. Morawska, J. W. Tang, W. Bahnfleth, P. M. Bluyssen, A. Boerstra, G. Buonanno, J. Cao, S. Dancer, A. Floto, F. Franchimon et al., “ How can airborne transmission of COVID-19 indoors be minimised?,” Environ. Int. 142, 105832 (2020). https://doi.org/10.1016/j.envint.2020.105832, Google ScholarCrossref
- 12.S. Y. Park, Y.-M. Kim, S. Yi, S. Lee, B.-J. Na, C. B. Kim, J.-I. Kim, H. S. Kim, Y. B. Kim, Y. Park et al., “ Coronavirus disease outbreak in call center, South Korea,” Emerging Infect. Dis. 26, 1666 (2020). https://doi.org/10.3201/eid2608.201274, Google ScholarCrossref
- 13.H. Qian, T. Miao, L. Liu, X. Zheng, D. Luo, and Y. Li, “ Indoor transmission of SARS-CoV-2,” MedRXiv (2020). Google Scholar
- 14.Centres for Disease Control and Prevention, “ Scientific brief: SARS-CoV-2 and potential airborne transmission,” CDC COVID-19 Science Briefs ( Centres for Disease Control and Prevention, 2021); accessed 20 April 2021. Google Scholar
- 15.World Health Organization, Coronavirus Disease (COVID-19): How is it Transmitted? ( World Health Organization, 2021); accessed 2 May 2021. Google Scholar
- 16.European Centre for Disease Prevention and Control, Questions and Answers on COVID-19: Basic Facts ( European Centre for Disease Prevention and Control, 2021); accessed 2 May 2021. Google Scholar
- 17.V. Vuorinen, M. Aarnio, M. Alava, V. Alopaeus, N. Atanasova, M. Auvinen, N. Balasubramanian, H. Bordbar, P. Erästö, R. Grande et al., “ Modelling aerosol transport and virus exposure with numerical simulations in relation to SARS-CoV-2 transmission by inhalation indoors,” Safety Sci. 130, 104866 (2020). https://doi.org/10.1016/j.ssci.2020.104866, Google ScholarCrossref
- 18.R. Zhang, Y. Li, A. L. Zhang, Y. Wang, and M. J. Molina, “ Identifying airborne transmission as the dominant route for the spread of COVID-19,” Proc. Natl. Acad. Sci. 117, 14857–14863 (2020). https://doi.org/10.1073/pnas.2009637117, Google ScholarCrossref
- 19.N. H. Leung, D. K. Chu, E. Y. Shiu, K.-H. Chan, J. J. McDevitt, B. J. Hau, H.-L. Yen, Y. Li, D. K. Ip, J. M. Peiris et al., “ Respiratory virus shedding in exhaled breath and efficacy of face masks,” Nat. Med. 26, 676–680 (2020). https://doi.org/10.1038/s41591-020-0843-2, Google ScholarCrossref
- 20.Y. Liu, Z. Ning, Y. Chen, M. Guo, Y. Liu, N. K. Gali, L. Sun, Y. Duan, J. Cai, D. Westerdahl et al., “ Aerodynamic analysis of SARS-CoV-2 in two Wuhan hospitals,” Nature 582, 557–560 (2020). https://doi.org/10.1038/s41586-020-2271-3, Google ScholarCrossref
- 21.C. R. MacIntyre, Q. Wang, S. Cauchemez, H. Seale, D. E. Dwyer, P. Yang, W. Shi, Z. Gao, X. Pang, Y. Zhang et al., “ A cluster randomized clinical trial comparing fit-tested and non-fit-tested N95 respirators to medical masks to prevent respiratory virus infection in health care workers,” Influenza Respir. Viruses 5, 170–179 (2011). https://doi.org/10.1111/j.1750-2659.2011.00198.x, Google ScholarCrossref
- 22.M. Liang, L. Gao, C. Cheng, Q. Zhou, J. P. Uy, K. Heiner, and C. Sun, “ Efficacy of face mask in preventing respiratory virus transmission: A systematic review and meta-analysis,” Travel Med. Infect. Dis. 36, 101751 (2020). https://doi.org/10.1016/j.tmaid.2020.101751, Google ScholarCrossref
- 23.A. Davies, K.-A. Thompson, K. Giri, G. Kafatos, J. Walker, and A. Bennett, “ Testing the efficacy of homemade masks: Would they protect in an influenza pandemic?,” Disaster Med. Public Health Preparedness 7, 413–418 (2013). https://doi.org/10.1017/dmp.2013.43, Google ScholarCrossref
- 24.Y. Wang, H. Tian, L. Zhang, M. Zhang, D. Guo, W. Wu, X. Zhang, G. L. Kan, L. Jia, D. Huo et al., “ Reduction of secondary transmission of SARS-CoV-2 in households by face mask use, disinfection and social distancing: A cohort study in Beijing, China,” BMJ Global Health 5, e002794 (2020). https://doi.org/10.1136/bmjgh-2020-002794, Google ScholarCrossref
- 25.J. Wu, F. Xu, W. Zhou, D. R. Feikin, C.-Y. Lin, X. He, Z. Zhu, W. Liang, D. P. Chin, and A. Schuchat, “ Risk factors for SARS among persons without known contact with SARS patients, Beijing, China,” Emerging Infect. Dis. 10, 210 (2004). https://doi.org/10.3201/eid1002.030730, Google ScholarCrossref
- 26.J. Howard, A. Huang, Z. Li, Z. Tufekci, V. Zdimal, H.-M. van der Westhuizen, A. von Delft, A. Price, L. Fridman, L.-H. Tang et al., “ An evidence review of face masks against COVID-19,” Proc. Natl. Acad. Sci. 118, e2014564118 (2021). https://doi.org/10.1073/pnas.2014564118, Google ScholarCrossref
- 27.Y. Li, G. M. Leung, J. Tang, X. Yang, C. Chao, J. Z. Lin, J. Lu, P. V. Nielsen, J. Niu, H. Qian et al., “ Role of ventilation in airborne transmission of infectious agents in the built environment—A multidisciplinary systematic review,” Indoor Air 17, 2–18 (2007). https://doi.org/10.1111/j.1600-0668.2006.00445.x, Google ScholarCrossref
- 28.Z. T. Ai and A. K. Melikov, “ Airborne spread of expiratory droplet nuclei between the occupants of indoor environments: A review,” Indoor Air 28, 500–524 (2018). https://doi.org/10.1111/ina.12465, Google ScholarCrossref
- 29.P. V. Nielsen, “ Control of airborne infectious diseases in ventilated spaces,” J. R. Soc. Interface 6, S747–S755 (2009). https://doi.org/10.1098/rsif.2009.0228.focus, Google ScholarCrossref
- 30.G. Sze To, M. Wan, C. Chao, F. Wei, S. Yu, and J. Kwan, “ A methodology for estimating airborne virus exposures in indoor environments using the spatial distribution of expiratory aerosols and virus viability characteristics,” Indoor Air 18, 425–438 (2008). https://doi.org/10.1111/j.1600-0668.2008.00544.x, Google ScholarCrossref
- 31.E. Bjørn and P. V. Nielsen, “ Dispersal of exhaled air and personal exposure in displacement ventilated rooms,” Indoor Air 12, 147–164 (2002). https://doi.org/10.1034/j.1600-0668.2002.08126.x, Google ScholarCrossref
- 32.R. K. Bhagat, M. D. Wykes, S. B. Dalziel, and P. Linden, “ Effects of ventilation on the indoor spread of COVID-19,” J. Fluid Mech. 903, F1 (2020). https://doi.org/10.1017/jfm.2020.720, Google ScholarCrossref
- 33.R. Mittal, C. Meneveau, and W. Wu, “ A mathematical framework for estimating risk of airborne transmission of COVID-19 with application to face mask use and social distancing,” Phys. Fluids 32, 101903 (2020). https://doi.org/10.1063/5.0025476, Google ScholarScitation, ISI
- 34.E. Riley, G. Murphy, and R. Riley, “ Airborne spread of measles in a suburban elementary school,” Am. J. Epidemiol. 107, 421–432 (1978). https://doi.org/10.1093/oxfordjournals.aje.a112560, Google ScholarCrossref
- 35.Z. Lau, K. Kaouri, and I. M. Griffiths, “ Modelling airborne transmission of COVID-19 in indoor spaces using an advection-diffusion-reaction equation,” arXiv:2012.12267 (2020). Google Scholar
- 36.B. Blocken, T. van Druenen, A. Ricci, L. Kang, T. van Hooff, P. Qin, L. Xia, C. A. Ruiz, J. Arts, J. Diepens et al., “ Ventilation and air cleaning to limit aerosol particle concentrations in a gym during the COVID-19 pandemic,” Build. Environ. 193, 107659 (2021). https://doi.org/10.1016/j.buildenv.2021.107659, Google ScholarCrossref
- 37.C. K. Ho, “ Modelling airborne transmission and ventilation impacts of a COVID-19 outbreak in a restaurant in Guangzhou, China,” Int. J. Comput. Fluid Dyn. 35, 1–19 (2021). https://doi.org/10.1080/10618562.2021.1910678, Google ScholarCrossref
- 38.G. Buonanno, L. Stabile, and L. Morawska, “ Estimation of airborne viral emission: Quanta emission rate of SARS-CoV-2 for infection risk assessment,” Environ. Int. 141, 105794 (2020). https://doi.org/10.1016/j.envint.2020.105794, Google ScholarCrossref
- 39.S. Shao, D. Zhou, R. He, J. Li, S. Zou, K. Mallery, S. Kumar, S. Yang, and J. Hong, “ Risk assessment of airborne transmission of COVID-19 by asymptomatic individuals under different practical settings,” J. Aerosol Sci. 151, 105661 (2021). https://doi.org/10.1016/j.jaerosci.2020.105661, Google ScholarCrossref
- 40.A. Khosronejad, C. Santoni, K. Flora, Z. Zhang, S. Kang, S. Payabvash, and F. Sotiropoulos, “ Fluid dynamics simulations show that facial masks can suppress the spread of COVID-19 in indoor environments,” AIP Adv. 10, 125109 (2020). https://doi.org/10.1063/5.0035414, Google ScholarScitation, ISI
- 41.G. R. Johnson and L. Morawska, “ The mechanism of breath aerosol formation,” J. Aerosol Med. Pulm. Drug Delivery 22, 229–237 (2009). https://doi.org/10.1089/jamp.2008.0720, Google ScholarCrossref
- 42.K. E. Barrett, S. M. Barman, S. Boitano, and H. L. Brooks, Ganong’s Review of Medical Physiology, 24th ed. ( McGraw-Hill, 2012). Google Scholar
- 43.C. Kähler, B. Sammler, and J. Kompenhans, “ Generation and control of tracer particles for optical flow investigations in air,” Exp. Fluids 33, 736–742 (2002). https://doi.org/10.1007/s00348-002-0492-x, Google ScholarCrossref
- 44.R. S. Papineni and F. S. Rosenthal, “ The size distribution of droplets in the exhaled breath of healthy human subjects,” J. Aerosol Med. 10, 105–116 (1997). https://doi.org/10.1089/jam.1997.10.105, Google ScholarCrossref
- 45.H. Holmgren, E. Ljungström, A.-C. Almstrand, B. Bake, and A.-C. Olin, “ Size distribution of exhaled particles in the range from 0.01 to 2.0 μm,” J. Aerosol Sci. 41, 439–446 (2010). https://doi.org/10.1016/j.jaerosci.2010.02.011, Google ScholarCrossref
- 46.X. Xie, Y. Li, A. Chwang, P. Ho, and W. Seto, “ How far droplets can move in indoor environments–revisiting the wells evaporation–falling curve,” Indoor Air 17, 211–225 (2007). https://doi.org/10.1111/j.1600-0668.2007.00469.x, Google ScholarCrossref
- 47.R. Durscher and S. Roy, “ Evaluation of thrust measurement techniques for dielectric barrier discharge actuators,” Exp. Fluids 53, 1165–1176 (2012). https://doi.org/10.1007/s00348-012-1349-6, Google ScholarCrossref
- 48.J. Wei and Y. Li, “ Airborne spread of infectious agents in the indoor environment,” Am. J. Infect. Control 44, S102–S108 (2016). https://doi.org/10.1016/j.ajic.2016.06.003, Google ScholarCrossref
- 49.C. Fairchild and J. Stampfer, “ Particle concentration in exhaled breath,” Am. Ind. Hyg. Assoc. J. 48, 948–949 (1987). https://doi.org/10.1080/15298668791385868, Google ScholarCrossref
- 50.A. A. Zaidi, B. C. Mattern, P. Claes, B. McEcoy, C. Hughes, and M. D. Shriver, “ Investigating the case of human nose shape and climate adaptation,” PLOS Genet. 13, e1006616 (2017). https://doi.org/10.1371/journal.pgen.1006616, Google ScholarCrossref
- 51.R. J. Adrian and J. Westerweel, Particle Image Velocimetry ( Cambridge University Press, 2011). Google Scholar
- 52.A. Weber, K. Willeke, R. Marchloni, T. Myojo, R. Mckay, J. Donnelly, and F. Liebhaber, “ Aerosol penetration and leakage characteristics of masks used in the health care industry,” Am. J. Infect. Control 21, 167–173 (1993). https://doi.org/10.1016/0196-6553(93)90027-2, Google ScholarCrossref
- 53.A. L. Sanchez, J. A. Hubbard, J. G. Dellinger, and B. L. Servantes, “ Experimental study of electrostatic aerosol filtration at moderate filter face velocity,” Aerosol Sci. Technol. 47, 606–615 (2013). https://doi.org/10.1080/02786826.2013.778384, Google ScholarCrossref
- 54.E. S. Moyer and M. Bergman, “ Electrostatic N-95 respirator filter media efficiency degradation resulting from intermittent sodium chloride aerosol exposure,” Appl. Occup. Environ. Hyg. 15, 600–608 (2000). https://doi.org/10.1080/10473220050075608, Google ScholarCrossref
- 55.H. Jung, J. K. Kim, S. Lee, J. Lee, J. Kim, P. Tsai, C. Yoon et al., “ Comparison of filtration efficiency and pressure drop in anti-yellow sand masks, quarantine masks, medical masks, general masks, and handkerchiefs,” Aerosol Air Qual. Res. 14, 991–1002 (2013). https://doi.org/10.4209/aaqr.2013.06.0201, Google ScholarCrossref
- 56.A. Konda, A. Prakash, G. A. Moss, M. Schmoldt, G. D. Grant, and S. Guha, “ Aerosol filtration efficiency of common fabrics used in respiratory cloth masks,” ACS Nano 14, 6339–6347 (2020). https://doi.org/10.1021/acsnano.0c03252, Google ScholarCrossref
- 57.S. N. Rogak, T. A. Sipkens, M. Guan, H. Nikookar, D. Vargas Figueroa, and J. Wang, “ Properties of materials considered for improvised masks,” Aerosol Sci. Technol. 55, 398–413 (2021). https://doi.org/10.1080/02786826.2020.1855321, Google ScholarCrossref
- 58.B. Maher, R. Chavez, G. C. Tomaz, T. Nguyen, and Y. Hassan, “ A fluid mechanics explanation of the effectiveness of common materials for respiratory masks,” Int. J. Infect. Dis. 99, 505–513 (2020). https://doi.org/10.1016/j.ijid.2020.07.066, Google ScholarCrossref
- 59.M. Zhao, L. Liao, W. Xiao, X. Yu, H. Wang, Q. Wang, Y. L. Lin, F. S. Kilinc-Balci, A. Price, L. Chu et al., “ Household materials selection for homemade cloth face coverings and their filtration efficiency enhancement with triboelectric charging,” Nano Lett. 20, 5544–5552 (2020). https://doi.org/10.1021/acs.nanolett.0c02211, Google ScholarCrossref
- 60.J. N. Hancock, M. J. Plumley, K. Schilling, D. Sheets, and L. Wilen, “ Comment on ‘aerosol filtration efficiency of common fabrics used in respiratory cloth masks’,” ACS Nano 14, 10758–10763 (2020). https://doi.org/10.1021/acsnano.0c05827, Google ScholarCrossref
- 61.S. Verma, M. Dhanak, and J. Frankenfield, “ Visualizing the effectiveness of face masks in obstructing respiratory jets,” Phys. Fluids 32, 061708 (2020). https://doi.org/10.1063/5.0016018, Google ScholarScitation, ISI
- 62.C. J. Kähler and R. Hain, “ Fundamental protective mechanisms of face masks against droplet infections,” J. Aerosol Sci. 148, 105617 (2020). https://doi.org/10.1016/j.jaerosci.2020.105617, Google ScholarCrossref
- 63.I. M. Viola, B. Peterson, G. Pisetta, G. Pavar, H. Akhtar, F. Menoloascina, E. Mangano, K. E. Dunn, R. Gabl, A. Nila, E. Molinari, C. Cummins, G. Thompson, T.-Y. M. Lo, F. C. Denison, P. Digard, O. Malik, M. J. G. Dunn, C. M. McDougall, and F. V. Mehendale, “ Face coverings, aerosol dispersion and mitigation of virus transmission risk,” IEEE Open J. Eng. Med. Biol. 2, 26–35 (2021). https://doi.org/10.1109/OJEMB.2021.3053215, Google ScholarCrossref
- 64.V. Arumuru, J. Pasa, and S. S. Samantaray, “ Experimental visualization of sneezing and efficacy of face masks and shields,” Phys. Fluids 32, 115129 (2020). https://doi.org/10.1063/5.0030101, Google ScholarScitation, ISI
- 65.E. E. Sickbert-Bennett, J. M. Samet, P. W. Clapp, H. Chen, J. Berntsen, K. L. Zeman, H. Tong, D. J. Weber, and W. D. Bennett, “ Filtration efficiency of hospital face mask alternatives available for use during the COVID-19 pandemic,” JAMA Internal Med. 180, 1607–1612 (2020). https://doi.org/10.1001/jamainternmed.2020.4221, Google ScholarCrossref
- 66.E. E. Sickbert-Bennett, J. M. Samet, S. E. Prince, H. Chen, K. L. Zeman, H. Tong, and W. D. Bennett, “ Fitted filtration efficiency of double masking during the COVID-19 pandemic,” JAMA Internal Med. (published online 2021). https://doi.org/10.1001/jamainternmed.2021.2033, Google ScholarCrossref
- 67.Q. Zhang and H. Johari, “ Effects of acceleration on turbulent jets,” Phys. Fluids 8, 2185–2195 (1996). https://doi.org/10.1063/1.868991, Google ScholarScitation, ISI
- 68.R. A. Fjeld and T. M. Owens, “ The effect of particle charge on penetration in an electret filter,” IEEE Trans. Ind. Appl. 24, 725–731 (1988). https://doi.org/10.1109/28.6128, Google ScholarCrossref
- 69.R. E. Shaffer and S. Rengasamy, “ Respiratory protection against airborne nanoparticles: A review,” J. Nanopart. Res. 11, 1661–1672 (2009). https://doi.org/10.1007/s11051-009-9649-3, Google ScholarCrossref
- 70.J. Kim, W. J. Jasper, and J. P. Hinestroza, “ Charge characterization of an electrically charged fiber via electrostatic force microscopy,” J. Eng. Fibers Fabr. 1, 30–46 (2006). https://doi.org/10.1177/155892500600100203, Google ScholarCrossref
- 71.L. W. Barrett and A. D. Rousseau, “ Aerosol loading performance of electret filter media,” Am. Ind. Hyg. Assoc. J. 59, 532–539 (1998). https://doi.org/10.1080/15428119891010703, Google ScholarCrossref
- 72.T. Foat, J. Drodge, J. Nally, and S. Parker, “ A relationship for the diffusion coefficient in eddy diffusion based indoor dispersion modelling,” Build. Environ. 169, 106591 (2020). https://doi.org/10.1016/j.buildenv.2019.106591, Google ScholarCrossref
- 73.B. Birnir and L. Angheluta, “ The build-up of droplet/aerosols carrying the SARS-CoV-2 coronavirus, in confined spaces,” medRxiv (2020). Google Scholar
- 74.T. Yamamoto, D. S. Ensor, and L. E. Sparks, “ Evaluation of ventilation performance for indoor space,” Build. Environ. 29, 291–296 (1994). https://doi.org/10.1016/0360-1323(94)90025-6, Google ScholarCrossref
- 75.S. Friedlander and H. Johnstone, “ Deposition of suspended particles from turbulent gas streams,” Ind. Eng. Chem. 49, 1151–1156 (1957). https://doi.org/10.1021/ie50571a039, Google ScholarCrossref
- 76.K.-C. Cheng, V. Acevedo-Bolton, R.-T. Jiang, N. E. Klepeis, W. R. Ott, O. B. Fringer, and L. M. Hildemann, “ Modeling exposure close to air pollution sources in naturally ventilated residences: Association of turbulent diffusion coefficient with air change rate,” Environ. Sci. Technol. 45, 4016–4022 (2011). https://doi.org/10.1021/es103080p, Google ScholarCrossref
- 77.J. A. Lednicky, M. Lauzard, Z. H. Fan, A. Jutla, T. B. Tilly, M. Gangwar, M. Usmani, S. N. Shankar, K. Mohamed, A. Eiguren-Fernandez et al., “ Viable SARS-CoV-2 in the air of a hospital room with COVID-19 patients,” Int. J. Infect. Dis. 100, 476–482 (2020). https://doi.org/10.1016/j.ijid.2020.09.025, Google ScholarCrossref